- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agol, Eric (1)
-
Allen, Natalie_H (1)
-
Benneke, Björn (1)
-
Delrez, Laetitia (1)
-
Doyon, René (1)
-
Ducrot, Elsa (1)
-
Espinoza, Néstor (1)
-
Gressier, Amélie (1)
-
Lafrenière, David (1)
-
Lim, Olivia (1)
-
Lustig-Yaeger, Jacob (1)
-
Piaulet-Ghorayeb, Caroline (1)
-
Radica, Michael (1)
-
Rustamkulov, Zafar (1)
-
Sotzen, Kristin_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The TRAPPIST-1 system has been extensively observed with JWST in the near-infrared with the goal of detecting atmospheric transit transmission spectra of these temperate, Earth-sized exoplanets. A byproduct has been much more precise times of transit compared with prior available data from Spitzer, Hubble Space Telescope, or ground-based telescopes. In this note we use 23 new timing measurements of all seven planets in the near-infrared from five JWST observing programs to better forecast and constrain the future times of transit in this system. In particular, we note that the transit times of TRAPPIST-1h have drifted significantly from a prior published analysis by up to tens of minutes. Our newer forecast has a higher precision, with uncertainties ranging from 7 to 105 s during JWST Cycles 4 and 5. This forecast will help to improve planning of future observations of the TRAPPIST-1 planets, while we postpone a full dynamical analysis to future work.more » « less
An official website of the United States government
